High Efficiency Video Coding: The Next Gen Codec

Matthew Goldman
Senior Vice President TV Compression Technology
Ericsson
High Efficiency Video Coding
Compression Bitrate Targets

- MPEG-2 VIDEO
 - 1994
 - 50% bitrate saving target

- AVC
 - 2003
 - 50% bitrate saving target

- HEVC
 - 2013
HEVC

• A new standardized compression algorithm
 – An evolution of AVC (H.264 | MPEG-4 Part 10)

• HEVC standardization
 – A Joint Collaborative Team on Video Coding (JCT-VC) of MPEG & VCEG
 – Aim: To deliver same picture quality for half the bitrate of AVC
 • Up to 10x more computational complexity to encode and 2x-3x to decode

• Key dates
 Main Profile, Main 10 Profile, and Main Still Profile approved
 • VCEG consented; Final text available March 1 → MPEG to issue ballot for ratification
 – January 2014 FDAM – Range extensions (Contribution applications) & Multi-view extensions
 – July 2014 FDIS – Scalable HEVC (SHVC)
HEVC Encoder

ENCODER CONTROL

Ref. Buffer
Intra
ME/MC
Mode Dec
Recon
Prediction
Residuals

Headers

ALF
SAO
DF

T^-1
Q^-1
T
Q

Bitstream

Source

Entropy Coder

Headers

Bitstream

Source

Entropy Coder
High Level Tool Comparison

AVC
- 16X16 block size
- Various Inter partitions down to 4x4
- 9 intra modes
- 8x8 and 4x4 transform sizes

HEVC
- 64x64 block size
- Hierarchical quad-tree partitioning down to 8x8 + 4x4 Transform Units
- 35 intra modes
- 32x32, 16x16, 8x8, 4x4 transform sizes
Coding Tree

- Coding Tree is a collection of Coding Units (CU) – CUs can have independent coding modes.
- Further partitioning using Prediction Units (Motion Vectors).
- Independent Transform Tree partitioning from 32x32 to 4x4.
CUs: Prediction & Transform Units

Separation of prediction and transform structures allows more flexible and efficient coding of video under various conditions and resolutions

Source: JCTVC-A124
HEVC Tools – Intra Prediction

AVC
- DC +
- 8 directional modes

HEVC
- DC + Planar +
- 33 directional modes

% of bits

<table>
<thead>
<tr>
<th></th>
<th>MPEG2</th>
<th>AVC</th>
<th>HEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of bits</td>
<td>250</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Media Type</td>
<td>MPEG2</td>
<td>AVC</td>
<td>HEVC</td>
</tr>
</tbody>
</table>
HEVC Tools – In-Loop Filters

• Deblocking Filter
 – Similar to AVC deblocking filter but does not filter 4x4 block edges

• Sample Adaptive Offset (SAO) Filter
 – Calculates edge and band offsets signaled to decoder
 – Offsets added to reconstructed pixels
 – SAO is not restricted to block boundaries
Tool Comparison: AVC HP vs. HEVC MP

<table>
<thead>
<tr>
<th>AVC High Profile</th>
<th>HEVC Main Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>16x16 Macroblock</td>
<td>Coding Unit quadtree structure, 64x64 down to 8x8</td>
</tr>
<tr>
<td>Partitions 16x16 to 4x4 square + non-square (inter)</td>
<td>Prediction Units, 64x64 to 8x8 square + non-square (inter) + asymmetric (inter)</td>
</tr>
<tr>
<td>8x8 and 4x4 transforms</td>
<td>Transform Units, 32x32 to 4x4, 4x4 skip</td>
</tr>
<tr>
<td>Intra prediction (8 directions + DC)</td>
<td>Intra prediction (33 directions + DC + planar)</td>
</tr>
<tr>
<td>Inter prediction luma 6-tap + 2-tap, to ¼ pel</td>
<td>Inter prediction luma 8-tap, to ¼ pel</td>
</tr>
<tr>
<td>Inter prediction chroma bi-linear interpolation</td>
<td>Inter prediction chroma 4-tap, to 1/8 pel</td>
</tr>
<tr>
<td>Motion vector prediction</td>
<td>Advanced motion vector prediction (spatial + temporal)</td>
</tr>
<tr>
<td>In-loop deblocking filter</td>
<td>In-loop deblocking filter & Sample Adaptive Offset (SAO) filter</td>
</tr>
<tr>
<td>CABAC or CAVLC</td>
<td>CABAC using parallel operations</td>
</tr>
</tbody>
</table>

CABAC = Context Adaptive Binary Arithmetic Coding
CAVLC = Context Adaptive Variable Length Coding
HEVC Potential

- For DTH, HEVC will give 40-50% saving over best AVC encoder today
 - HD: AVC 6 - 9 Mbps → HEVC 3 - 4.5 Mbps
 - SD: AVC 1.5 - 2.5 Mbps → HEVC 0.8 - 1.5 Mbps
 - UHD 4K: AVC 16 - 24 Mbps (estimate) → HEVC 8 - 12 Mbps
 - Fits in existing channel bandwidth of currently deployed HD!

- HEVC practical availability
 - Driven by availability of receive devices
 - Software-based implementations available now; address a subset of applications
 - First production silicon available during 2013 → first practical systemization 1H14
 - Implementation issues (impacts practical ability to deploy)
 - Migration of deployed (legacy) vs. greenfield
 - Intellectual property licensing needs to be settled → MPEG LA
 - UHDTV (4K) uncertainty: Main 10 Profile? Higher frame rate?
 - Better interlaced content support?
 - Contribution market – Professional profiles (“RExt”, e.g., 4:2:2) planned Jan. 2014
Industry Drivers - Efficiency

Mobile TV
- Expensive bandwidth
- Increasing demand

Multi-screen
- More HD
- More screens

xDSL reach
- More subscribers

DSNG
- More HD
- Expensive bandwidth

Satellite Distribution
- Spectrum efficiency

UHDTV
- High bit-rate need

Terrestrial Broadcast
- Spectrum efficiency

Expensive bandwidth
Increasing demand
More HD
More screens
More subscribers
More HD
Expensive bandwidth
Spectrum efficiency
High bit-rate need
HEVC Version 1 Contains 3 Profiles

• Main Profile supports general consumer-grade video (4:2:0 8-bit)

• Main 10 Profile targets large screen consumer applications that require higher resolution
 – Main Profile + bit-depth up to 10 bits
 – UHDTV and large screens
 – Not for professional applications (contribution, mastering)

• Still Picture Profile targets specialty applications
 – Strict sub-set of Main Profile
 – One IDR picture

• Some practical concerns still remain …
Interlaced Tools Disagreements

• De-interlace prior to encoding
 – Shown to give great efficiency results
 – Doesn’t fit all usage scenarios
 • DTA, embedded transcoding
 • Billions of pre-encoded MPEG-2 Video & AVC source content

• PAFF/MBAFF (AVC) vs. SAFF/Field Only Coding/Frame Only Coding (HEVC)
 – What about PAFF without MBAFF?

• Chroma bleeding in 4:2:0 (no chroma motion vector offset when predicting top-to-bottom / bottom-to-top field as AVC)

• WG11 has asked for more evidence before proceeding further
Resolution revolution
What is UHDTV(4K)?

• 4x spatial resolution of HDTV
 – 3840 x 2160 YCrCb (4:2:2 10bit)
UHDTVs Now Available
Visual Perception - Resolution

0.01°

1.3x to 2.6x diagonal

9' to 18' for 84” diagonal

84” TV
UHDTV – Key Consumer Value

High-quality movies

Popular sports events
UHDTV Short Term Challenges

- HDMI 1.4 does not support 4Kp60
- 4 x 3G-SDI
- Production mixers
- Graphics
- Live cameras
- Set-top boxes for DTH
On What Format Will Industry Settle For 4K UHDTV?

4K HEVC could require up to 80x more horsepower vs. HD AVC

Format	Resolution	Bits	Color	Frame Rate	Bandwidth
SDTV					
HDTV					
4KTV P30	8b 4:2:0				
4KTV P60+	10b 4:2:2				
Film OCN					

© Ericsson AB 2013 | 2013-04-03 | Page 21
Driving UHDTV Content & Events

Movies

Live sports

TV dramas

2014

FIFA WORLD CUP Brasil

Rio 2016
Contribution: 4:2:2 vs. 4:2:0

Chroma rate = ¼ Luma rate
Saves 50% bandwidth

Chroma rate = ½ Luma rate
Saves 33% bandwidth

10-Bit Quantization

8 bit = 0 to 255
10 bit = 0 to 1023
HEVC Range Extensions

• HEVC range extensions (RExt) will be an Annex to HEVC v1
 – 4:2:2/4:4:4/RGB chroma formats
 – Higher bit-depths, including 10/12/14
 – Mixed Chroma formats (4:2:0 & 4:4:4) – mixed video (4:2:0) and computer graphics (4:4:4)
 – Lossless Coding

• As of January 2013 meeting cycle
 › Use square transform and square intra prediction
 › Intra prediction angle adjustment for 4:2:2
 › Software to support both square and non-square transforms

• Timeline
 – DAM July 2013
 – FDAM January 2014
 – But, schedule may slip out due to efficiency concerns …
Comparison of AVC-I and HEVC-I vs. SSStP

<table>
<thead>
<tr>
<th>Sequence name</th>
<th>Target Y/G SNR</th>
<th>BD-Rates of AVC vs SSStP</th>
<th>BD-Rates of HEVC vs SSStP</th>
<th>BD-Rates of HEVC vs AVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y/G</td>
<td>Cb/B</td>
<td>Cr/R</td>
<td>Y/G</td>
</tr>
<tr>
<td>Kimono</td>
<td>56.72</td>
<td>-12.57</td>
<td>-12.73</td>
<td>-12.60</td>
</tr>
<tr>
<td>EBUUboCandlelight</td>
<td>59.03</td>
<td>-15.42</td>
<td>-15.48</td>
<td>-15.41</td>
</tr>
<tr>
<td>VenueVu</td>
<td>63.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DucksAndLegs</td>
<td>60.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OldTownCross</td>
<td>52.48</td>
<td>-12.84</td>
<td>-12.94</td>
<td>-12.91</td>
</tr>
<tr>
<td>Average sequence</td>
<td>56.71</td>
<td>-10.68</td>
<td>-11.31</td>
<td>-10.65</td>
</tr>
<tr>
<td>YCbCr 4:2:2</td>
<td>QP < 1 required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimono</td>
<td>54.86</td>
<td>-17.29</td>
<td>-14.02</td>
<td>-14.14</td>
</tr>
<tr>
<td>EBUWaterRocksClose</td>
<td>50.96</td>
<td>-17.08</td>
<td>-12.94</td>
<td>-12.46</td>
</tr>
<tr>
<td>EBUKidsSoccer</td>
<td>48.78</td>
<td>-18.74</td>
<td>-13.87</td>
<td>-14.01</td>
</tr>
<tr>
<td>Average sequence</td>
<td>50.73</td>
<td>-17.87</td>
<td>-13.92</td>
<td>-13.44</td>
</tr>
</tbody>
</table>

Only 5% improvement over AVC!
Possible Profiles and Conflicting Goals

- Possible profiles
 - Consumer – lower bitrates, few changes over v1
 - Professional – high bitrates, new tools for performance gains, divergence from v1

- Mixed content – more applicable to consumer applications (e.g., gaming) but requires new tools (divergence from v1)

- Is consumer profile a subset of Professional or can there be a divergence at a tool level (i.e., mutually exclusive transform designs)?
4K UHD Contribution using AVC

4K source → 4x 3G-SDI

- 4x AVC encoders synchronized

or

- 4x AVC decoders
 - phase-lock synchronization

fiber

UHD/4K display
Scaleable HEVC (SHVC)

Annex F

Add new reference pictures for Scaleable and Multi-view Extensions

Annex G

Motion compensation on up-sampled decoded base layer pictures

Annex H

New CU level coding tool for Inter layer prediction